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Growth and detachment of carbon dioxide bubbles on a horizontal porous surface in water is investigated
in this paper. Uniform carbon dioxide injection on the porous surface is considered. The Young–Laplace
equation is solved with the geometry method to yield the bubble shape. The dynamic pressure on the
bubble surface due to bubble expansion is neglected. Multi-solution modes are found. Based on the char-
acteristics of the solution modes, it is postulated that the bubble grows with a monotonically increasing
base area until the maximum value is reached according to the fundamental solution mode. After that,
the bubble jumps toward the secondary solution mode at a constant volume, and then detaches from
the surface. The increasing rate of the bubble volume due to mass diffusion/convection is evaluated by
solving the momentum and concentration equations. Evolution of the bubble shape then is determined
corresponding to the variation of the bubble volume. The numerical results indicate that hydrophobic
surface produces large bubble and thus gives rise to better efficiency for dissolved gas removal.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Growth and detachment of bubbles has been the subject of
many investigations in the past decades. The flow configurations
examined in the previous studies include at least gas injection
through a thin wall tube (or an orifice on a flat plate) submerged
in liquid [1–6], boiling on a heated surface [7–10], and bubble
growth in solutions supersaturated with a gas [11–14]. Many of
the conventional studies treated the bubble as a whole or trun-
cated sphere [2,7,8,11–14]. However, the existing experimental
observations [3–6,10] revealed that the bubble is generally not
spherical due to the presences of gravity force (large Bond num-
ber), contact angle, surface geometry, bubble dynamics (inertia
and viscosity), etc. especially when the status of the bubble is near
detachment.

There are a few numerical methods for the shapes of axisym-
metric nonspherical bubbles. Among them, Pitts [15] and Sonoy-
ama and Iguchi [3] determined the bubble shape by minimizing
the total free energy of a bubble at a given volume. Chesters
[16,17] solved the Young–Laplace equation with a perturbation ap-
proach in cylindrical coordinates (z,r). The bubble shape was rep-
resented with the function z = z(r) to circumvent the singularity
df/dz =1 at the bubble tip (r = 0) if the function r = f(z) was em-
ployed instead. However, the function z = z(r) poses to the singu-
larity dz/dr =1 too when the bubble is necking. Oguz and
ll rights reserved.
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Prosperetti [1] solved the Young–Laplace equation with the bound-
ary integral method to obtain the shape evolution of a bubble that
grew and detached from a submerged small thin wall tube. Two
different growth regimes were found to exist according to whether
the gas flow rate into the bubble was smaller or greater than a crit-
ical value. Recently, Chen and Groll [9] solved the Young–Laplace
equation in arc-length coordinates (i.e. r = r(s), z = z(s)) by using
the Runge–Kutta method of order four. A few parameters appear-
ing in the numerical formulation were determined such that the
real bubble shape (from experiment) was best fitted.

Another point of controversy has been the matter of bubble
detachment. Bubble detachment is a natural consequence of the
dynamics of bubble growth. Due to the lack of reliable information,
the bubble is generally forced to detach when some criterion has
been satisfied. However, there is still no consistency on the defini-
tion of bubble detachment criterion. Force balance of an attached
bubble as a whole has been widely employed for the definition
of bubble detachment criterion [2,7,9,12,13,18,19]. The forces con-
sidered in this branch of bubble detachment criteria include buoy-
ancy force, pressure force on the contact area, surface tension force,
drag force, inertial force, etc. The contact angle is another popular
indicator for bubble detachment criterion. In this branch, bubble
detachment is judged to occur when the contact angle reaches a
critical value, e.g. 70� in Duhar and Colin [4,5], 90� in Bisperink
and Prins [11], and 5–35� in Uzel et al. [14]. Some other criteria
for bubble detachment include (a) the bubble volume reaches the
maximum possible value [15–17], (b) the neck diameter of the
bubble is smaller than one micrometer [6] or smaller than 10% of
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the tube diameter [1], (c) the contact area rapidly decreases to zero
[8], and (d) minimization of Lagrange function is judged to have no
reasonable solution [3].

The direct methanol fuel cell (DMFC) has attracted much atten-
tion due to its potential applications as a power source for trans-
portation and portable electronic devices. On the anode side of a
DMFC, carbon dioxide is produced as a result of methanol electro-
chemical oxidation. The produced carbon dioxide (dissolved in
water) diffuses through a back layer and forms bubbles on the out-
er surface of the back layer [20]. The carbon dioxide bubble should
be removed efficiently. Otherwise, the anode channels will be
blocked, leading to limited mass transport. In the present study,
the back layer (usually made of carbon cloth or carbon paper) is re-
garded as a porous medium. Growth and detachment of carbon
dioxide bubbles on the porous surface will be investigated with a
proposed bubble detachment criterion.

2. Theoretical analysis

2.1. Governing equations

Consider a water of semi-infinity (Z P1) above an infinite hor-
izontal porous surface on the XY-plane. Initially, the water is pure
and stationary. At t > 0, a uniform carbon dioxide flux Q injects
from the porous surface such that carbon dioxide bubbles nucleate,
grow, and detach at some particular sites on the porous surface.
The static contact angle of carbon dioxide bubble on carbon cloth
in water is approximately h = 65�. The bubble growth due to mass
diffusion is very slow in the present case. Hence, the contact angle
is assumed to remain as h = 65� throughout the whole bubble
growth period [21] for simplicity. The process is isothermal and
incompressible. Evaporation of water is neglected. Bubbles nucle-
ate only on the porous surface. Any two neighboring nucleation
sites have the same distance such that the problem can be formu-
lated for a single site inside a hexangular cylinder. For simplicity,
the physical domain is further simplified as an axisymmetric prob-
lem inside a circular cylinder of radius R0. The configuration of the
problem is depicted in Fig. 1 in a dimensionless cylindrical coordi-
nates (z,r) normalized with a reference length L, i.e.
Fig. 1. Flow configuration and coordinate system of the problem.
z ¼ Z=L; r ¼ R=L; r0 ¼ R0=L ð1Þ

The bubble shape is represented by

r ¼ f ðz; sÞ ð2Þ

where

f ðz; sÞ ¼ FðZ; tÞ=L; s ¼ t=tc ð3Þ

The reference length L and reference time tc are to be defined. The
bubble has a height b(s), a base radius f(0,s), and a contact angle
h. The natural convection effect is neglected. All of the thermophys-
ical properties are assumed constant.

After imposing the above assumptions and making the follow-
ing dimensionless transformation
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where (u,v) is the velocity in the cylindrical coordinate system (z,r).
The reference quantities including velocity Uc, pressure Pref, concen-
tration Cref, and altitude zref are to be determined. Mathematically,
the dimensionless density q* and viscosity l* are step functions
across the bubble surface. They have the value of unity in the liquid
region and jump to another constant in the gas region, i.e.

q� ¼
1 in liquid
qg=ql in gas

(
ð9aÞ

l� ¼
1 in liquid
lg=ll in gas

(
ð9bÞ

where the subscripts g and l denote, respectively, the properties of
the gas and the liquid. Note also that the concentration Eq. (8) ap-
plies only in the liquid region. Inside the bubble, the perfect-gas law

Pg ¼ qgRT ð10Þ

is used instead, where R and T are the gas constant and tempera-
ture, respectively.

2.2. Bubble shape

Across the bubble surface, the pressure jump is expressible as
the Young–Laplace equation [22,23]



Fig. 2. (a) The resulting contact angle h as a function of jtip at various b. (b) The
three solution modes at h = 65� and b = 1.4.
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where c is the surface tension, and Cac is the characteristic capillary
number. The dimensionless curvature of the free surface j (has
been normalized by L�1) is positive for a concave liquid surface. It
can be evaluated from the principal curvatures j1 and j2, i.e.

j ¼ j1 þ j2 ð12aÞ

j1 ¼
�f 00

ð1þ f 02Þ1:5
ð12bÞ

j2 ¼
1

f ð1þ f 02Þ0:5
ð12cÞ

where r = f(z,s) represents the bubble shape as defined in Eq. (2).
The primes stand for the partial differentiation with respect to z.
In the present problem, the bubble is assumed to grow gradually
such that the normal stress rnn on the bubble surface is negligible.
Hence, the Young–Laplace Eq. (11a) reduces to

p̂l � p̂a ¼ Dp̂ ¼ 1
Cac

Boðz� zref Þ � j
	 


þ constant

j ¼ Bo z� Bo zref þ CacðDp̂� constantÞ
	 
 ð13Þ

where the constant comes from the arbitrary constants c1 and c2 in
Eq. (4). The Bond number is defined as

Bo ¼
ðql � qgÞg L2

c
ð14Þ

which represents the hydrostatic buoyancy force.
It is important to note that the quantity p̂ appearing in the

momentum Eqs. (6) and (7) is a flow-induced pressure (known
as dynamic pressure [9]). In quiescent fluids, the pressure p̂ has a
zero gradient in all directions and thus becomes an arbitrary con-
stant in each fluid. This means that the pressure jump Dp̂ can be
treated as an arbitrary constant. In the present study, the flow
due to bubble growth is assumed very weak such that variation
of the pressure jump Dp̂ along the bubble surface is negligibly
small as compared to the hydrostatic buoyancy force. Therefore,
the Young–Laplace Eq. (13) further reduces to

j ¼ jtip þ ðz� bÞ ð15Þ

if the reference length is assigned as

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
ðql � qgÞg

s
ð16Þ

to yield Bo = 1, where jtip is the curvature of the bubble tip at z = b.
Eq. (15) indicates that the curvature decreases linearly from j = jtip

at the bubble tip (z = b) to j = jtip � b at the bubble base (z = 0) due
to the hydraulic buoyancy force. The value of zref has been absorbed
into jtip and thus does not affect the formulation (15).

Eqs. (12) and (19) form a nonlinear second-order ordinary dif-
ferential equation for the bubble shape r = f(z,s). The associated
boundary conditions are

f ðb; sÞ ¼ 0; f 0ðb; sÞ ¼ �1; f 0ð0; sÞ ¼ �coth ð17Þ

The problem is time-dependent because the bubble height b de-
pends on time. It is of great numerical difficulty to solve the prob-
lem due to the fact that f(z,s) has an infinite derivative at the
bubble tip. Numerical difficulty would arise also from the Neumann
boundary condition at the bubble base when the contact angle is
zero (h = 0). In the present study, the problem is solved with the
geometry method [23] that handles the evolute of a curve (center
of curvature) rather than the curve itself. Such a strategy circum-
vents the numerical difficulty successfully.

For a given bubble height b and a tip curvature jtip, the bubble
shape can be obtained by solving Eqs. (12), (15) and (17). Fig. 2(a)
shows the resulting contact angle h on the porous surface (z = 0) as
a function of jtip under a few prescribed bubble heights b. From
Fig. 2(a) it is found that the problem could have multiple solutions
for a given b. For instance, there are at least three solution modes
for the case of b = 1.4 that satisfy all of the boundary conditions
(17) with h = 65�. As depicted in Fig. 2(b), the three solution modes
share the same bubble height and contact angle, although their tip
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curvatures jtip are different. For convenience, the bubble volume is
evaluated from

mðbÞ ¼
Z b

0
f 2ðzÞdz ð18Þ

which has been normalized by pL3. The resulting bubble volume as
a function of b is shown in Fig. 3 for each of the three solution
modes. As expected, mode 1 always has a bubble volume larger
than that of mode 2 at the same bubble height (see Fig. 2(b)). In
the course of increasing b from 1.40 to 1.50, solution modes 1 and
2 approach each other and eventually coincide and then both disap-
pear at b > 1.46.

2.3. Bubble detachment

Recently, Nam et al. [10] found that the ebullition cycle of bub-
ble detachment could be divided into two periods. In the growth
period the residual bubble nucleus grew until its base area reached
the maximum value. The detachment period included base area
shrinking, bubble neck forming, and bubble detaching from the
wafer surface. The detachment period in their experiment lasted
only 0.15 s as compared to 1.60 s in the growth period. This implies
that the bubble volume is essentially constant in the whole detach-
ment period because the duration time is very short as remarked
by Uzel et al. [14].

Among the many possible equilibrium shapes of the bubble,
only solution mode 1 could occur naturally. Fig. 4(a) shows the vol-
ume v, the base area f2(0), and the tip curvature jtip as functions of
b for solution mode 1 subject to the contact angle h = 65�. The bub-
ble shapes for various bubble heights are plotted in Fig. 4(b), where
the cases b = 1.15 and b = 1.40 possess the maximum base area and
the maximum volume, respectively. For convenience, the volume
to base area ratio m/f2(0) versus the volume is presented in
Fig. 4(c). The bubble becomes less stable when the volume to base
area ratio increases. Hence, the parameter m/f2(0) could be a good
measure for stability of equilibrium bubbles. Theoretically, when
bubble grows (or bubble volume increases) both bubble height b
and base area increase monotonically until the maximum base
area is reached at m = 0.3241 (see Fig. 4(a)). In the course of bubble
growth, the volume to base area ratio m/f2(0) increases linearly in
the range of 0.08 6 m 6 0.32 as observable from Fig. 4(c). After that,
m/f2(0) has a sharp increase. Beyond the maximum volume, equilib-
rium bubble does not seem possible. Hence, the maximum volume
can be regarded as the upper limit of equilibrium bubbles [15–17].
Fig. 3. Bubble volume as a function of b for different solution modes.
Due to hydraulic instability, however, bubble detachment might
occur somewhere in the region 0.3241 6 m 6 0.4135, i.e. the inter-
val between the two white dots in Fig. 4(c). For convenience, this
particular range of bubble volume will be referred to as ‘‘critical
equilibrium bubbles”.

Fig. 3 reveals that solution modes 1 and 2 form a single close loop.
This means that the Young–Laplace equation has at least two solu-
tions for a given volume below the maximum volume. Among the
solutions, the one having the lowest bubble height is redefined as
solution mode 1 for convenience, while solution mode 2 has the sec-
ond lowest height. Solution mode 3 is defined similarly if exists. It is
important to note that solution mode 2 always possesses a ‘‘neck”
because it is taller than solution mode 1 under the same volume.

As mentioned earlier, the bubble volume is essentially constant
in the detachment period. In the present study, bubble detachment
is assumed to occur at the lower limit of the ‘‘critical equilibrium
bubbles” in view of possible perturbation from the environment.
Therefore, it is postulated that in the growth period the bubble
grows with a monotonically increasing base area until the maxi-
mum value is reached according to solution mode 1. After that,
the bubble jumps toward solution mode 2 at a constant volume,
and then detaches from the surface. Transition between the two
solution modes can be attributed to hydraulic instability. Fig. 5
shows the bubble shapes of solution modes 1 and 2 at the same
volume m = 0.3241 for the case of h = 65�. The height and base area
(b, f2(0)) of the two bubbles are (1.15,0.2440) and (1.43,0.06876).
This means that the bubble should experience a very severe base
area shrinking (the base area ratio is 0.2828) when jumps from
solution mode 1 toward solution mode 2 in the detachment period.
Although experimental evidence for the jumping from solution
modes 1 to 2 is lacking, the postulation has no influence on the
problem before bubble detachment.

2.4. Boundary conditions

For simplicity, the governing Eqs. (5)–(8) are solved only in the
liquid region in the present study. Hence, both q* and l* are as-
signed as unity in the momentum Eqs. (6) and (7). This implies
the need of a set of properly defined boundary conditions on the
bubble surface. On the liquid side of the bubble surface, the satura-
tion concentration is

Cs ¼
Pl

H
¼ Pg � cj=L

H
ð19Þ

based on the Henry law and the Young–Laplace Eq. (11a), where H
is the Henry constant [24]. This leads to the boundary condition

/ðz; f ; sÞ ¼ 1�Xj ¼ 1�Xðjtip þ z� bÞ ð20aÞ

X ¼ c
PgL

ð20bÞ

for the concentration Eq. (8) on the bubble surface if the reference
concentration is assigned as

Cref ¼
Pg

H
ð21Þ

When the concentration /(z,r,s) in the liquid region is available, the
mass increasing rate inside the bubble at time s can be evaluated
from

PecH
dmðsÞ

ds
¼ qf 2ð0; sÞ þ 2

Z
C

f ðz; sÞ @/
@r

dzþ @/
@z

dr
� �

ð22aÞ

H ¼
qg

Cref
; q ¼ Q

Qc
; Q c ¼

DlCref

L
ð22bÞ

where C denotes the bubble surface while the second term on the
RHS of Eq. (22a) denotes the net mass influx from the liquid region



Fig. 4. (a) Bubble volume, base area, and tip curvature as functions of b for solution mode 1. (b) Bubble shapes at various b for solution mode 1. (c) The volume to base area
ratio v/f2(0) versus the volume.
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through the bubble surface. The first term is the mass injection
directly from the porous surface on the bubble base. Hence, the
bubble volume at the next time step can be estimated from

mðsþ DsÞ ¼ mðsÞ þ dmðsÞ
ds

� �
Ds ð23Þ

once the growing rate of the bubble (dm/ds) is obtained from Eq.
(22a), where Ds is the time step employed in the numerical
simulation.

In the present study, the corresponding bubble height b and tip
curvature jtip are obtained from Fig. 4(a) for a given bubble volume
m. Based on the two parameters, the bubble shape r = f(z) is deter-
mined with the geometry method [23]. Fig. 6 illustrates the move-
ment of the bubble shape from s to s + Ds. The white dots are the
solution of the bubble shape produced by the geometry method.
For simplicity, the migrating velocity of the bubble surface is as-
sumed normal to the bubble surface at the time s + Ds, i.e.
r ¼ f ðz; sþ DsÞ ð24Þ

Hence, the arrow from point B to point A as illustrated in Fig. 6 is
defined as the displacement of point A during the time interval
[s,s + Ds] where the arrow is normal to the bubble surface (24) at
point A. To take the bubble dilation effect into account, the velocity
speed at point A is estimated from

mA ¼
BA
Ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðzBÞDa0

f ðzAÞDa1

s
ð25Þ

where BA is the distance between points A and B, and zA and zB de-
note the altitude coordinate of point A and B, respectively. The
lengths Da0 and Da1 are defined in Fig. 6. The migration velocity
of the bubble surface then is interpolated from the velocities at
the white points.

Finally, the associated boundary conditions on the other four
boundaries are defined by



Fig. 6. Estimation of expansion velocity of the bubble surface.

Fig. 5. Bubble shapes for solution modes 1 and 2 having the same volume
v = 0.3241.
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@uðz;0; sÞ=@r ¼ 0; mðz;0; sÞ ¼ 0; @/ðz;0; sÞ=@r ¼ 0 ð26aÞ
@uðz; r0; sÞ=@r ¼ 0; mðz; r0; sÞ ¼ 0; @/ðz; r0; sÞ=@r ¼ 0 ð26bÞ
uð0; r; sÞ ¼ 0; mð0; r; sÞ ¼ 0; @/ð0; r; sÞ=@z ¼ �q ð26cÞ
@uðzmax; r; sÞ=@z ¼ 0; mðzmax; r; sÞ ¼ 0; /ðzmax; r; sÞ ¼ 0 ð26dÞ

where the computational domain is truncated at z = zmax. Note also
that the boundary condition (26a) at the symmetric axis is valid
only for b 6 z 6 zmax, while Eq. (26c) is applied only in the region
of f(0) 6 r 6 r0.
3. Result and discussion

Numerical simulation is performed for the contact angle h = 65�
as mentioned earlier. The system temperature is 25 �C at standard
atmospheric pressure (Pg = 101.3 kPa). The reference velocity is as-
signed as Uc = Dl/L such that Pec = 1. The thermophysical properties
used in the computation are

ql ¼ 997:0 kg=m3; ll ¼ 0:0008998 N s=m2

qg ¼ 1:812 kg=m3; c ¼ 0:0720 N=m;

H ¼ 68:03 kPa=ðkg=m3Þ; Dl ¼ 1:92� 10�9 m2=s

ð27Þ

The corresponding dimensionless parameters are

H¼1:217; X¼0:0002617; Rec ¼
qlDl

ll
¼ Sc�1¼0:002127 ð28Þ

The following quantities will be needed when the dimensionless
variables are converted into dimensional quantities

g¼9:806 m=s2; L¼2:716 mm; Uc ¼0:7069�10�6 m=s;

Cref ¼1:489 kg=m3; tc ¼3842 s; Q c ¼1:053�10�6 kg=m2s
ð29Þ

In the present study, the weighting function scheme [25] along with
the NAPPLE algorithm [26,27] is employed to solve the governing
Eqs. (5)–(8) with the associated boundary conditions (20), (22),
(25), and (26). The solution procedure starts with a given seed bub-
ble of m = 0.004401 (b = 0.23) under the initial condition

uðz; r; 0Þ ¼ 0; mðz; r; 0Þ ¼ 0; /ðz; r;0Þ ¼ 0 ð30Þ

The computational domain is truncated at zmax = 5. For simplicity,
the pressure level is defined by p̂ðzmax; r; sÞ ¼ 0. After some preli-
minary grid tests, it is found that the numerical solution for the dif-
fusion Eq. (8) is not sensitive to the grid mesh. Hence, a uniform
Cartesian grid system Dz = Dr = 0.01 under a uniform time step
Ds = 0.01 is employed for all of the computations in the present
study.

Fig. 7 shows the evolution of the resulting bubble shape for the
case of r0 = 3 and q = 10. The velocity on the surface of the seed
bubble is zero, and thus s = 0.01 shares the same bubble profile
with s = 0 as depicted in Fig. 7. In the present case the bubble
shrinks at the very beginning of the diffusion process and subse-
quently grows to the maximum base area and then detaches from
the porous surface at s = 0.1412 with a volume of m = 0.3241. At
this particular moment, both volume and height of the bubble
could be still increasing while the base area of the bubble starts
to shrink (see Fig. 4(a)). The solid curves in Fig. 8 show the corre-
sponding concentration distribution at this moment. Fig. 8 shows
that the concentration on the liquid side of the bubble surface is
essentially unity because the surface tension effect is negligibly
small (X� 1). The mass (carbon dioxide) flux enters the bubble
from the lower part (below the iso-concentration curve for / = 1)
while leaves on the upper part. The maximum concentration /
= 4.38 occurs at (z,r) = (0,1). Use of zmax = 5 seems to be adequate
for the present study.

Bubble detachment from a solid surface is a very complicated
fluid flow problem. When the bubble lifts off from the porous sur-
face, the bubble might entrain in its wake of high carbon dioxide
concentration. In the present work, this effect is neglected for sim-
plicity. Instead, a fictional concentration with a ‘‘seed” bubble rep-
resented by the dashed lines in Fig. 8 is employed as the ‘‘initial”
condition for the growth period of the second bubble. The fictional
concentration is defined such that the liquid volume below each
iso-concentration surfaces (i.e. / = 0.2, 0.5, . . . , etc.) is identical to



Fig. 7. Expansion of the first bubble for q = 10 and r0 = 3.

Fig. 8. Comparison of the concentration just before the detachment of the first
bubble and the estimated ‘‘initial” concentration for the growth period of the
second bubble.

Fig. 9. Concentration just before the detachment the 20th bubble.
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the counterpart of the solid curves revealed in Fig. 8. The numerical
procedure is repeated for 20 bubbles in the present work. Similar
definition of ‘‘initial” concentration is employed for each of the
other 18 bubbles. Bubble shrinkage is found to occur only at the
very beginning of the growth period of the first bubble due to
the assumed zero concentration in the environment liquid. Fig. 9
shows the concentration just before the detachment of the 20th
bubble. The maximum concentration occurs at /(0,0.672) = 8.42.
This implies that bubble nucleation might take place on the porous
surface [28] in the vicinity of the main bubble similar to that ob-
served by Nam et al. in their experiment [10]. Nevertheless, homo-
geneous nucleation in the liquid does not seem possible. It requires
a supersaturation of 1100 6 / 6 1700 for carbonated beverage as
reported by Wilt [28].
Fig. 10(a) shows the bubble growth time sn required for the nth
bubble under (h,q) = (65�, 10) and various values of r0. As expected,
the growth time deceases as the bubble number increases due to
the increasing concentration in the environment liquid. For in-
stance, the growth times decrease from s1 = 0.1489 to s20 =
0.01558 when r0 = 1; from s1 = 0.1475 to s20 = 0.007549 when
r0 = 2; and from s1 = 0.1412 to s20 = 0.007139 when r0 = 3. The first
bubble always takes a very long time to grow as compared to the
second bubble. The radius of the diffusion domain for a nucleation
site r0 seems to have only little influence on the growth time of the
first bubble. Moreover, it shows essentially no influence on the
growth time for n P 8 when r0 is large (r0 P 2). The growth time
of bubbles under the parameters (h,r0) = (65�, 2) for various mass
fluxes is shown in Fig. 10(b). For q = 10, 50, 100, the growth time
of the first bubble is s1 = 0.1475, 0.04262, 0.03073, respectively,
while the growth time of the 20th bubble is s20 = 0.007549,
0.002163, 0.001820, respectively. Increasing the mass flux is seen
to decrease the required growth time.

In the present problem, both diffusion coefficient Dl and fluid
flow due to bubble growth are very small. Hence, bubble detach-
ment from the porous surface becomes the major means of mass
transport (see Fig. 9 for instance). The efficiency of mass transport
by bubble detachment during the growth period of the 20th bubble
is defined as

g ¼ DmH
s20r2

0q
ð31Þ

where Dm is the volume difference between the maximum bubble
(m = 0.3241) and the ‘‘seed” bubble (m = 0.004401). The denominator
of Eq. (31) represents the total mass injection from the porous sur-
face during the growth period of the 20th bubble while the numer-
ator denotes the mass increase inside the bubble during the same
time interval. The efficiency under the parameters (h,q) = (65�,
10) is 2.421, 1.249, and 0.5871 for r0 = 1, 2, and 3, respectively. At
(h,r0) = (65�, 2) the efficiency is 1.249, 0.8720, and 0.5182 for
q = 10, 50, and 100, respectively.

Finally, the computations are repeated for h = 30� to investigate
the contact angle effect. Fig. 11 reveals the bubble shapes at vari-
ous bubble heights. The solution procedure starts with a given seed
bubble of m = 0.00025 (b = 0.1). The bubble is assumed to detach
when the maximum base area is reached at m = 0.02502



Fig. 10. (a) Influence of r0 on the growth time of the nth bubble at q = 10 and
h = 65�. (b) Influence of q on the growth time of the nth bubble at r0 = 2 and h = 65�.

Fig. 11. Bubble shapes at various b for solution mode 1 under h = 30�.

Fig. 12. Growth time of the nth bubble at various q and r0 under h = 30�.
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(b = 0.524). The resulting bubble growth time is shown in Fig. 12
under various parameters of r0 and q. The growth time of the first
bubble in the case of (r0,q) = (2,10) is s1 = 0.06636 which is not plot-
ted in the figure. The efficiency under the parameters (h,q) = (30�,
10) is 0.6280, 0.1570, and 0.06978 for r0 = 1, 2, and 3, while that un-
der (h,r0) = (30�, 2) is 0.1570, 0.04433, and 0.02355 for q = 10, 50,
and 100. The low mass transport efficiency found in the case of
h = 30� might be attributed to the small bubble surface area. This
indicates that hydrophobic surface produces large bubble and thus
gives rise to better efficiency for dissolved gas removal.

4. Conclusion

Growth and detachment of carbon dioxide bubbles on a hori-
zontal porous surface with a uniform mass injection is investigated
in the paper. Based on the cases studied in the present work, the
following conclusions are drawn:

(a) The bubble volume is determined by the mass diffusion in
the problem. Evolution of bubble shape can be obtained by
solving the Young–Laplace equation once the bubble volume
is known.
(b) Multiple solutions modes are found for a given volume.
(c) It is postulated that the bubble grows with a monotonically

increasing base area until the maximum value is reached
according to the fundamental solution mode. After that,
the bubble jumps toward the secondary solution mode at a
constant volume, and then detaches from the surface.

(d) Hydrophobic surface produces large bubble and thus gives
rise to better efficiency for dissolved gas removal.
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